

HDX-DEV-200
Script Application

Edition July 2025

Herbert Hilhorst – herbert.hilhorst@hcl-software.com

Tim Golledge – tim.golledge@hcl-software.com

 2 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Table of Contents

Authors ... 3
Introduction .. 4
Prerequisites ... 5
Lab Overview ... 6
Part 1: Use multiple instances of the same Script Application with different preferences 8
Part 2: Create a new Angular Script Application using DX articles content 13
Part 3: Create a new React Script Application that manage product data stored in HCL Leap
 .. 23

Conclusion ... 41
Resources ... 42
Legal statements ... 43
Disclaimers .. 44

 3 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Authors

This document was created by the following Subject Matter Experts:

Herbert Hilhorst

Company:
HCLSoftware

Bio

Herbert Hilhorst is an HCL Digital Experience (DX) Technical
Advisor at HCLSoftware.

Contact: herbert.hilhorst@hcl-software.com

Tim Golledge

Company:
HCLSoftware

Bio

Tim Golledge is an HCL Digital Experience (DX) Technical
Advisor at HCLSoftware.

Contact: tim.golledge@hcl-software.com

 4 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Introduction

This hands-on lab guides you through creating more advanced applications on HCL Digital Experience
(DX), using its advanced Script Application capabilities. You will experience how quick and easy it is
to use JavaScript frameworks, like React and Angular to create and update applications.

In this DX developer lab, you play the role of Gene, a developer for the fictitious Woodburn Studio
company.

 Gene Hayes, Developer, based in Chicago (USA)

As a Web Developer you will discover new ways to develop reusable Script Applications, including
using JavaScript frameworks, like Angular and React. You will also learn how to have these
applications use HCL DX and HCL Leap data and have the applications communicate to each other.

 5 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Prerequisites

1. Completion of HDX-INTRO, HDX-BU-100 and HDX-DEV-100 courses, including the labs. This
gets you DXClient deployed and configured, and have some basic skills on how to develop
Script Applications online and locally.

2. Access to download the Lab Resources. In the same place where you have found this lab,
you will find corresponding resources which you may download and unzip in your Desktop.
This helps you to run the lab more easily, and you may later replace them by your own ones.

3. A local code editor. This lab provides instructions with Visual Studio Code (VSC):
https://code.visualstudio.com

You will be using the following user IDs and passwords:
Purpose User Password
SoFy Login Your official email id Your password
Developer Gene Hayes ghayes (or wpsadmin) HCL-Dem0 (or wpsadmin)

 6 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Lab Overview

In this lab you will learn more advanced features of the Script Application, like managing the
preferences of each instance, using Angular and React, consuming data from HCL DX and HCL Leap
and have different Script Applications communicate with each other.
You will use some existing Script Applications to easily get this working and you will learn how to
change an existing JavaScript application into a DX Script Application. This is illustrated here by
creating a new React Script Application from scratch, using one of the many ways documented in
https://react.dev/learn/build-a-react-app-from-scratch, in this case you will use Vite
https://vite.dev. You may also apply these steps to any JavaScript application you may have found or
developed using an AI tool.

Here are the three parts.

Part 1: Use multiple instances of the same Script Application with different preferences

You will first deploy a Script Application twice on the same page and configure each instance with
different preferences.

Then you will discover how this was developed.

 7 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Part 2: Create a new Angular Script Application using DX articles content

You will update a new Angular Script Application that uses a local and public resources

to use Woodburn Healthcare articles stored in DX and show them in a carousel. You will test it locally
first and then deploy it to your DX server and add it to a page.

Part 3: Create a new React Script Application that manage product data stored in HCL Leap

You will create new React Product List and Product Details Script Applications that work with HCL
Leap application data. You will first test them locally, then build minified versions, deploy them to
the server, add them to a DX page and finally have them communicate with each together.

 8 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Part 1: Use multiple instances of the same Script Application with
different preferences

You will first deploy a Script Application twice on the same page and configure each instance with
different preferences.

1. Download the portlet-prefs Script Application and open it in your favorite editor (e.g. Visual
Studio Code). Notice the preview-image.png file used to manage the icon of the page
component in DX.

2. Update the config.json with your hostname, open a Terminal and run the DXClient deploy
Script Application command.

dxclient deploy-scriptapplication push -wcmContentName "Portlet Preferences" -
wcmSiteArea "Script Application Library/Script Portlet Applications" -mainHtmlFile
"index.html" -contentRoot <your path to where you downloaded the portlet-prefs
Script Application>/portlet-prefs

 9 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

3. Then add the Script Application twice to the same DX page under the Woodburn Studio site.
On the server where the DX Solution Modules has been installed, next to Woodburn Studio
Home Page, click Open.

4. Log on to the DX server as Gene Hayes. Click Log in.

5. Then use the credentials of Gene (User ID: ghayes, Password: HCL-Dem0 – if you do not
have these, you may use the default administrator account with User ID: wpsadmin,
Password: wpsadmin)

6. If you have created a Promotion page in the Theme Development lab, you may use
that, otherwise use the existing Blog page. We’ll show instructions with the
Promotion page. Click Promotion (otherwise Blog).

 10 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

7. Turn the Edit Mode on, click Add page components and applications, select Script
Applications, add your new Portlet Preferences Script Application to your page
twice (notice the icon) and close the toolbar.

8. Scroll down to the first instance, check the columns that show and update the preference.
Click Settings, then uncheck the Status, Updated and Address columns and click Save.

 11 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

9. You see that these columns do no longer appear. When you scroll further down, you will see
that the other instance is still showing all the columns.

10. Feel free to try different settings on the other instance of your Portlet Preferences Script
Application. Next, have a look at how this is implemented. Open the portlet_prefs.js file and
have a look at the code. You will see it use the getPortletPreferences and
setPortletPreferences methods of the spHelper. The prefix __SPNS__ is used to make the
variables and methods unique.

 12 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

11. Then edit the Script Application using the Script Application Editor. Click Edit.

12. And you see that the __SPNS__ has been converted to the [Plugin:ScriptPortletNamespace].
E.g. in the same place in the portlet_prefs.js file.

You have successfully deployed and discovered how to use reusable and configurable Script
Applications using preferences with the spHelper.

 13 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Part 2: Create a new Angular Script Application using DX articles
content

In this part, you will update a new Angular Script Application to use Woodburn Healthcare articles
stored in DX and show them in a carousel. You will test it locally first and then deploy it to your DX
server and add it to a page.

1. First download the article-cards-angular-app Script Application and open it in your favorite
editor (e.g. Visual Studio Code). Have a look at the JSON that manages the content of the
carousel. Open the src/assets/json/articles.json file.

2. Have a look at the place where this is read. Open the src/app/article.service.ts file and notice
how the getArticles and getArticle methods are constructed.

 14 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

3. And how these are used to create the output in the src/app/card/card.component.html file.

4. Then run the application locally first. Open a Terminal and run the following command.

npm install

5. Run the following command to start a local server.

ng serve

 15 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

6. To test the application, navigate to your local server http://localhost:4200/ and you should
see the application output. The application will automatically reload if you change any of the
source files.

7. Now update it to work with HCL DX content. The code is already available and commented
out. Hence comment out the code for the local JSON use (add // before lines 3 and 4),
uncomment lines 6 and 7 to use of DX JSON content and comment out the script for local
JSON data (add /* in line 13).

 16 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

8. At the end of the local JSON code end the commenting out (add */ on line 32) and comment
out the use of DX JSON content (remove the /* from line 33 and */ from line 55). Notice how
the same getArticles method now uses a DX Content as a Service (CaaS) URL and getArticle
uses the WCM V2 API.

9. You may try the CaaS page to see what DX content it shows. It is constructed from your SoFy
DX server host and the CaaS part /wps/poc?page=ibm.portal.caas.page&mime-
type=application/json&urile=wcm:path:/woodburn%20healthcare%20design/json/articles.jso
n. E.g. https://dx.sbx0000.play.hclsofy.com/wps/poc?page=ibm.portal.caas.page&mime-
type=application/json&urile=wcm:path:/woodburn%20healthcare%20design/json/articles.jso
n. If you do not have this JSON yet, you may use the HDX-DEV-200 Web Content
Development lab to create it.

10. Then save the file src/app/article.service.ts and you will notice that the server gets updated
automatically and now shows nothing anymore. This is because the DX content is blocked by
the proxy.

 17 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

11. For local use of the DX Content, you need to configure and use the proxy. This has been set
up for you in the proxy.conf.js file. You need to update this to match your DX server. If you
are using HCL SoFy, just update the part of the host with sbx0000 to yours and save the file.

12. Then you need to run your local server with this proxy. Stop the existing server (CTRL C) and
then start it again using the following command.

ng serve --proxy-config proxy.conf.js

 18 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

13. You should now see the application load the articles from DX.

14. Now you will build the application. This uses the Angular configuration managed in the
angular.json file. Open it to see that it is going to be built in the dist/article-cards-angular-
app folder, managed by the build, options, and outputPath here.

15. Run the build command.

ng build

 19 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

16. This creates the dist/article-cards-angular-app folder for your application with a browser
sub-folder and all the minified resources.

17. Deploy this new Angular application to your DX server. You will use the Webpack for this,
which is partly preconfigured for you. Open the package.json and check under the scripts
section. There are several DX Deploy scripts that use the DXClient deploy-scriptapplication
push command.

18. If you scroll down further, you will notice the parameter configuration for the DXClient
command for this Script Application. It stores the name of the Script Application in
wcmContentName, the web content library and site area to store it under wcmSiteArea and
the contentRoot of the Angular content. You need to update the hostname to match your DX
server one and then save the file.

 20 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

19. You may deploy the application using the dx-deploy-app script for Mac and Linux or dx-
deploy-win for Windows. Notice that the user’s name and password are not set. To deploy it
set them first and then run the appropriate deploy target. E.g. on a Mac, using a user that has
the rights to create this content in the selected library and site area, such as the wpsadmin
user with the corresponding password wpsadmin:

dxUsername=wpsadmin dxPassword=wpsadmin npm run dx-deploy-app

20. Notice that the local file doit.sh allows you to do these two steps and prompts the username
and password.

 21 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

21. Have a look at how this is stored in the Script Application Library. Open the Script Application
Library, Content, Script Applications, Angular Cards Basic content and have a look at the
new elements that have been added. You can edit the description that appears when looking
at this page component. Enter a clear description for your content authors, like Show the
latest articles in a card format and save it. Click Save and Close.

22. Finally, add it to a page to test it. You may add it also to the Blogs or Promotion page, as you
did in the earlier exercise. Select it first to see the details.

23. You can see the description you added under the Details section here. Now add it to the
page. Click Add To Page.

 22 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

24. Scroll down to see your new Script Application working. Click Edit to see its code.

25. And notice the different files from the build’s dist directory.

Congratulations! You have now learned how to create a new Angular application that uses DX
content and Webpack to simply test, build and deploy to your DX server.

 23 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Part 3: Create a new React Script Application that manage product
data stored in HCL Leap

You will create new React Product List and Product Details Script Applications that work with HCL
Leap application data. You will first test them locally, then build minified versions, deploy them to
the server, add them to a DX page and finally have them communicate with each together.

1. You will use one of the many ways to create React applications, using https://vite.dev. One
of the ways to create the React application is using npm create create vite@latest <name of
your application> -- --template react.
First create the Product List React application with the name product-list-react-app. Go to
your directory where you develop your Script Applications and create this new application
using the following command in a terminal.

npm create vite@latest product-list-react-app -- --template react

2. As suggested by the generator, go to this new directory and install it, using the commands:

cd product-list-react-app
npm install

3. Run it on your local development server, using the command:

npm run dev

 24 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

4. Open a browser with this URL https://localhost:5173/. As you can see, the code is located in
the src/App.jsx. You may click on the count is 0 button to have it count.

5. Open your new application in your favorite code editor, in this lab, we have used Microsoft
Visual Studio Code. To turn this into a reusable DX Script Application, there are a few things
you need to do. First, you need to ensure you can combine and access all the resources in
this application, once it is deployed. It is important that in the build directory, all URLs that
point to files in the application are relative (e.g. ./src/assets/apps.css) and not absolute (like
/src/assets/apps.css). To change all these relative URLs to the right URLs in a Script
Application, add data-scriptportlet-combine-urls="true" to the html tag, typically in the
index.html. In this application, edit the index.html and edit it, as shown.

6. To ensure this Vite React application produces relative URLs, you also need to update the
vite.config.js, add as shown and save it. Note that this may be managed differently for other
React applications.

base: './',

 25 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

7. Each React application uses a root id in the body section. To allow you to put multiple DX
Script Applications on the same page, this id must be unique. You may easily do this using
the Script Application namespace. Update the index.html again and this time add the Script
Application namespace before the root id. This is done locally managed using __SPNS__, as
shown:

8. This root id also needs to be updated in the createRoot method in src/main.jsx, as shown.

9. Update the style for root as well in src/App.css.

 26 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

10. Check that the application still looks and works the same way locally (remember, the server
refreshes the page with every change). This React application has some SVG files. Since
CF208, SVG files are disabled in DX for security reasons. See https://help.hcl-
software.com/digital-experience/9.5/latest/whatsnew/cf20/newcf208/#web-content-
manager-set-svg-to-disabled-by-default. You may either allow them, or simply remove or
replace them. In this case, you may just delete them. Select the files public/vite.svg and
src/assets/react.svg, right click Delete and confirm with Move to Trash.

11. And confirm. Click Move to Trash.

 27 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

12. Update it your application with code to show a list of products, managed in an HCL Leap
application. First, you create the styling. When your Script Application is deployed, you want
this to be managed by your theme. However, when developing and testing locally, you may
want to use the same or other styling and load it locally only. This is managed in the
index.html file. Replace this with your downloaded file product-list-react-app/index.html
version where special stylesheets for fontAwesome, Google Fonts and Material Design
Bootstrap (MDB - https://mdbootstrap.com/) are loaded. Notice how the Script Application
namespace (__SPNS__) is used to create unique identifiers, similar to how it is used for
variables and methods.

 28 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

13. As your styling is now managed externally, you should update or remove the locally
managed CSS in the src/index.css file. Likely, in your environment, your design with styles
would be managed in the DX theme and locally you may refer to them instead. In this case,
you can simply remove it, by commenting out line 3 from the src/main.jsx that imports it
with import './index.css'.

14. Now update it to get the products from an HCL Leap application. Replace the src/app.jsx
with the one you downloaded under product-list-react-app and see how this reads product
data from an HCL Leap application, using the Leap REST APIs that include the application ID
and form ID. When testing it locally, it uses the anonymous Leap REST API, while using the
authenticated REST API, once deployed on the DX server. This is done since CORS is blocking
secured Leap data. You may overcome this by using Foundry as an API middleware or
configure CORS for your HCL Leap development server.

 29 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

15. A bit lower, you see the listener that is configured to listen for updates coming from the
Product Details React application and creates a custom event with the selected product.

16. And further below, you see how it creates a Bootstrap styled card with the list of product
entries.

 30 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

17. Now save this and check it locally (your page should refresh automatically and show this).

18. This may be a good way to introduce this application to your business users in DX. You may
take a screenshot or use a good image (or use the downloaded product-list-react-
app/preview-image.png file) and save it as preview-image.png under the public folder.

 31 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

19. Now you need to build your application. Open a terminal and run the command

npm run build

20. Notice where the build is created. In this case, in the dist folder which contains the
index.html, the assets folder and the preview image.

 32 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

21. Now deploy this as a Script Application to your DX server. As this application is using
Webpack, you may simply edit the package.json to add the DXClient commands and its
corresponding configuration. Edit the package.json and under scripts, add these extra
dxclient scripts:

, "dx-deploy-app": "dxclient deploy-scriptapplication push -dxUsername $dxUsername -dxPassword $dxPassword
-wcmContentName \"$npm_package_config_dxclient_wcmContentName\" -wcmSiteArea
\"$npm_package_config_dxclient_wcmSiteArea\" -mainHtmlFile $npm_package_config_dxclient_mainHtmlFile -
contentRoot \"$npm_package_config_dxclient_contentRoot\" -dxProtocol
$npm_package_config_dxclient_protocol -hostname $npm_package_config_dxclient_hostname -dxPort
$npm_package_config_dxclient_port",

"dx-deploy-app-win": "dxclient deploy-scriptapplication push -dxUsername %dxUsername% -dxPassword
%dxPassword% -wcmContentName \"%npm_package_config_dxclient_wcmContentName%\" -wcmSiteArea
\"%npm_package_config_dxclient_wcmSiteArea%\" -mainHtmlFile
%npm_package_config_dxclient_mainHtmlFile% -contentRoot
\"%npm_package_config_dxclient_contentRoot%\" -dxProtocol %npm_package_config_dxclient_protocol% -
hostname %npm_package_config_dxclient_hostname% -dxPort %npm_package_config_dxclient_port%",

"dx-deploy-app-use-env": "dxclient deploy-scriptapplication push -dxUsername $dxUsername -dxPassword
$dxPassword -wcmContentName \"$npm_package_config_dxclient_wcmContentName\" -wcmSiteArea
\"$npm_package_config_dxclient_wcmSiteArea\" -mainHtmlFile $npm_package_config_dxclient_mainHtmlFile -
contentRoot \"$npm_package_config_dxclient_contentRoot\" -dxProtocol $dxProtocol -hostname $dxHostname
-dxPort $dxPort",

"dx-deploy-app-use-env-win": "dxclient deploy-scriptapplication push -dxUsername %dxUsername% -dxPassword
%dxPassword% -wcmContentName \"%npm_package_config_dxclient_wcmContentName%\" -wcmSiteArea
\"%npm_package_config_dxclient_wcmSiteArea%\" -mainHtmlFile
%npm_package_config_dxclient_mainHtmlFile% -contentRoot
\"%npm_package_config_dxclient_contentRoot%\" -dxProtocol %dxProtocol% -hostname %dxHostname% -
dxPort %dxPort%"

 33 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

22. In the same file, add a config section using the application’s name (managed with
wcmContentName, here set to Product List React Application). Then specify the
deployment location (site area with wcmSiteArea). In this example, the application will be
deployed under the Script Portlet Applications site area within the Script Application
Library. This site area is already configured to make any Script Application content show in
the toolbar. You need to specify the main HTML file with mainHtmlFile (in this application
index.html), DX server protocol, hostname (update this to your server) and port. Also set
the contentRoot to the folder where your application is built, in this case ./dist/. Your
configuration should look similar to this:

,
"config": {
 "dxclient": {
 "wcmContentName": "Product List React Application",
 "wcmSiteArea": "Script Application Library/Script Portlet Applications",
 "mainHtmlFile": "index.html",
 "contentRoot": "./dist/",
 "protocol": "https",
 "hostname": "dx.sbx0000.play.hclsofy.com",
 "port": "443"
 }
}

23. Deploy the application to your DX server using your new dx-deploy-app (or dx-deploy-app-
win for Windows) script. As the user name and password are not set prepend, use the
command with dxUsername=<username> dxPassword=<password> run dx-deploy-app to
set them and run the dx-deploy-app (-win for Windows) script. Use your Configuration
Wizard credentials for this. In SoFy, you may find them under the Sandbox Links; here
wpsadmin for both.

 34 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

24. In this case, run the following command and check that the content push was successful:

dxUsername=wpsadmin dxPassword=wpsadmin npm run dx-deploy-app

25. Add your Script Application to a DX page. Use a page that uses the styling referred to in this
Script Application and is set up with a profile using a React module, e.g. under Woodburn
Stores. Ensure you have the Edit Mode enabled. Go to the Woodburn Stores site, select the
My Work page, open the Add page components and applications, select Script Applications
and use the + to add your new Product List React Application to this page. Then close the
toolbar.

 35 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

26. Now you should see your list of products using the styling of your DX theme.

27. If you do not see the application, check that this page uses a theme profile configured with a
React module. Open the context menu and select Open Page Settings.

 36 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

28. Click Edit Page Settings, Advanced and notice your page uses a Spotlight profile in the
Spotlight theme. Close it.

29. Check that React is in this theme. Open the applications menu and click Themes.

30. Edit the Spotlight theme.

 37 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

31. Open the profiles, select the spotlight profile profile_spotlight.json and notice the out of
the box React module wp_react_18_2_0 is selected.

32. Now create a second Product Details React Application, called product-details-react-app.
You may either use the one you downloaded or follow the same steps to create it from
scratch as for your Product List React Application. In that case, use npm create vite@latest
product-details-react-app -- --template react. Then replace index.html by the product-
details-react-app/index.html and src/apps.jsx with the ones in the sample code under
product-details-react-app you have downloaded. Update the vite.config.js, and main.jsx
again. Delete the svg files. Add the DXClient deployment scripts and configuration to the
package.json (you may copy it from the Product List and update as well or from the
downloaded product-details-react-app/package.json), this time with the name Product
Details React Application.

33. The Leap application allows to read but not write as an anonymous user. Hence, the code
uses the secure Leap REST API and will only run on the DX server, where it benefits from the
Single Sign On capability that is set up on that environment. You also see below the listener
that is put in place for the selected product event.

 38 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

34. Further below, you see below how the application reads a single Leap data form, in this case
for the selected product and checks if there are any errors.

35. You can also see the code that updates the product data in the HCL Leap application and
sends a custom event for the Product List React application to get it refreshed.

36. Create (or reuse the downloaded one) and add again a preview image under the public
folder.

 39 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

37. Deploy this application to your DX server. Open a Terminal, build it (npm run build), deploy it
(using dxUsername=wpsadmin dxPassword=wpsadmin npm run dx-deploy-app) and check if
was successfully deployed again.

38. Add this new Product Details Script Application to the same page as where you put the
Product List application.

39. Now show them side by side. Change the layout to 2 Column Equal.

 40 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

40. And move the Product Details React Application to the right. Then test if they work together.
Disable the Edit Mode, close the toolbar and click the Edit button of one of the products.

41. The Product Details application should now appear. Update it, e.g. change the name of
Laptop 1 to Laptop 10 and save it. Click Save Changes.

42. You see the change update in the Product List application.

43. If you are interested, you may take a look at the HCL Leap application that was easily created
from a Microsoft Excel sheet. It is called product_inventory and deployed on your instance.

Congratulations! You have successfully created and deployed two new React Script Applications that
use HCL Leap data and communicate with together on a DX page.

 41 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Conclusion

By following this lab, you have learned how to create reusable and configurable Script Applications
that can use Vanilla JavaScript or any JavaScript framework , such as Angular and React.. You learned
how to test JavaScript applications locally, use a DXClient configuration to simplify deploying Script
Applications to a DX server and get them team up in DX sites.

You also learned how to turn any JavaScript application into a DX Script Application.

Feel free to use any existing applications or AI tools to help you build new and exciting JavaScript
applications, hosted on HCL DX. Once deployed to DX, as it is a content item, you may use all the DX
specific capabilities, such as managing its access, target it, syndicate it between DX servers, etc.

You may look at other more advanced how-to guides in the Help Center: https://help.hcl-
software.com/digital-experience/9.5/latest/guide_me/tutorials/scriptapps/how_to/ and other
samples in the DX Marketplace https://marketplace.hcl-software.com/dx where you may search for

all Script Applications: , such as
https://marketplace.hcl-software.com/dx/catalog/dx-sample-react-script-app and those in the
Digital Solutions Community https://developer.ds.hcl-software.com/tag/script-application.

 42 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Resources

Refer to the following resources to learn more:

HCL Digital Experience Home - https://hclsw.co/dx

HCL SoFy - https://hclsofy.com/

HCL Digital Experience on HCL SoFy - https://hclsofy.com/dx

HCL Software - https://hclsw.co/software

HCL Product Support - https://hclsw.co/product-support

HCL DX Product Documentation - https://hclsw.co/dx-product-documentation

HCL DX Support Q&A Forum - https://hclsw.co/dx-support-forum

HCL DX Video Playlist on YouTube - https://hclsw.co/dx-video-playlist

HCL DX Product Ideas - https://hclsw.co/dx-ideas

HCL DX Product Demos - https://hclsw.co/dx-product-demo

HCL DX Did You Know? Videos - https://hclsw.co/dx-dyk-videos

HCL DX GitHub - https://hclsw.co/dx-github

 43 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Legal statements

This edition applies to version 9.5, release 228 of HCL Digital Experience and to all subsequent
releases and modifications until otherwise indicated in new editions.

When you send information to HCL Technologies Ltd., you grant HCL Technologies Ltd. a
nonexclusive right to use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

©2025 Copyright HCL Technologies Ltd and others. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with HCL Technologies
Ltd.

 44 ©2025 HCLSoftware

HDX-DEV-200 SCRIPT APPLICATION

Disclaimers

This report is subject to the HCL Terms of Use (https://www.hcl.com/terms-of-use) and the
following disclaimers:

The information contained in this report is provided for informational purposes only. While efforts
were made to verify the completeness and accuracy of the information contained in this publication,
it is provided AS IS without warranty of any kind, express or implied, including but not limited to the
implied warranties of merchantability, non-infringement, and fitness for a particular purpose. In
addition, this information is based on HCL’s current product plans and strategy, which are subject to
change by HCL without notice. HCL shall not be responsible for any direct, indirect, incidental,
consequential, special or other damages arising out of the use of, or otherwise related to, this report
or any other materials. Nothing contained in this publication is intended to, nor shall have the effect
of, creating any warranties or representations from HCL or its suppliers or licensors, or altering the
terms and conditions of the applicable license agreement governing the use of HCL software.

References in this report to HCL products, programs, or services do not imply that they will be
available in all countries in which HCL operates. Product release dates and/or capabilities referenced
in this presentation may change at any time at HCL’s sole discretion based on market opportunities
or other factors, and are not intended to be a commitment to future product or feature availability
in any way. The underlying database used to support these reports is refreshed on a weekly basis.
Discrepancies found between reports generated using this web tool and other HCL documentation
sources may or may not be attributed to different publish and refresh cycles for this tool and other
sources. Nothing contained in this report is intended to, nor shall have the effect of, stating.

or implying that any activities undertaken by you will result in any specific sales, revenue growth,
savings or other results. You assume sole responsibility for any results you obtain or decisions you
make as a result of this report. Notwithstanding the HCL Terms of Use (https://www.hcl.com/terms-
of-use), users of this site are permitted to copy and save the reports generated from this tool for
such users own internal business purpose. No other use shall be permitted.

